您现在的位置:融合网首页 > 工信 > 软件 >

AlphaGo能否代表人工智能的未来(2)

来源:Michael282694 作者:Michael282694 责任编辑:方向 发表时间:2016-03-14 11:06 
核心提示:不过在现实中,猴子打出一篇像样的文章的概率是零,因为科学家经过反复试验后发现,猴子在使用键盘时通常会连按某一个键或拍击键盘,2003年,某个科学家做了这个实验,结果打出了5张全是S的纸。最终打出的文字不可能
不过在现实中,猴子打出一篇像样的文章的概率是零,因为科学家经过反复试验后发现,猴子在使用键盘时通常会连按某一个键或拍击键盘,2003年,某个科学家做了这个实验,结果打出了5张全是‘S’的纸。最终打出的文字不可能成为一个完整的句子。这是因为现实是非常大的有限,而不是严格意义上的无限。

AlphaGo解空间示意图

AlphaGo是什么,有何厉害之处?

通过阅读AlphaGo发表在《Nature 2016》上的文章Mastering the game of Go with deep neuralnetworks and tree search[3]可以了解到:

Abstract: The game of Go has long been viewed as the most challengingof classic games for artificial intelligence owing to its enormous search spaceand the difficulty of evaluating board positions and moves. Here we introduce a new approach tocomputer Go that uses ‘value networks’ to evaluate board positions and ‘policynetworks’ to select moves. These deep neural networks are trained by a novelcombination of supervised learning from human expert games, and reinforcementlearning from games of self-play. Without any lookahead search, the neuralnetworks play Go at the level of state-of-the-art Monte Carlo tree searchprograms that simulate thousands of random games of self-play. We alsointroduce a new search algorithm that combines Monte Carlo simulation with valueand policy networks. Using this search algorithm, our program AlphaGoachieved a 99.8% winning rate against other Go programs, and defeated the humanEuropean Go champion by 5 games to 0. This is the first time that a computerprogram has defeated a human professional player in the full-sized game of Go,a feat previously thought to be at least a decade away

AlphaGo的神经网络训练模型和架构

通俗地讲,AlphaGo就是一套针对围棋周密设计的深度学习引擎,采用多种机器学习技术进行整合:增强学习(reinforcement learning),深度神经网络(deep neural network),走棋网络(policy network)、快速走子(fast rollout)、估值网络(Value Network)和蒙特卡洛树搜索(Monte Carlo tree search, MCTS),加上Google强大的硬件支撑和云计算资源,结合CPU   GPU,通过增强学习和自我博弈学习不断提高自身水平[4-5]。值得一提的是,paper两位主要作者之一的Aja Huang(一名低调的台湾教授,另一位是David Silver)也是一名围棋爱好者,目前水平已经达到业余六级(普通人一般是业余二级),整个AlphaGo主要来自两位在博士阶段及毕业以后五年以上的积累。

在未来,AI科技能否超越人脑?

自1956年AI这个概念被提出并确立以来,一共经历了符号主义→ 专家系统→ …→ 统计学习→ 神经网络→ 深度学习等几大重要阶段,尤其是近十年来对深度学习的研究使得AI在历经神经网络发展低潮过后再一次空前崛起。(责任编辑:方向)

  • “扫一扫”关注融合网微信号

免责声明:我方仅为合法的第三方企业注册用户所发布的内容提供存储空间,融合网不对其发布的内容提供任何形式的保证:不保证内容满足您的要求,不保证融合网的服务不会中断。因网络状况、通讯线路、第三方网站或管理部门的要求等任何原因而导致您不能正常使用融合网,融合网不承担任何法律责任。

第三方企业注册用户在融合网发布的内容(包含但不限于融合网目前各产品功能里的内容)仅表明其第三方企业注册用户的立场和观点,并不代表融合网的立场或观点。相关各方及作者发布此信息的目的在于传播、分享更多信息,并不代表本网站的观点和立场,更与本站立场无关。相关各方及作者在我方平台上发表、发布的所有资料、言论等仅代表其作者个人观点,与本网站立场无关,不对您构成任何投资、交易等方面的建议。用户应基于自己的独立判断,自行决定并承担相应风险。

根据相关协议内容,第三方企业注册用户已知悉自身作为内容的发布者,需自行对所发表内容(如,字体、图片、文章内容等)负责,因所发表内容(如,字体、图片、文章内容等)等所引发的一切纠纷均由该内容的发布者(即,第三方企业注册用户)承担全部法律及连带责任。融合网不承担任何法律及连带责任。

第三方企业注册用户在融合网相关栏目上所发布的涉嫌侵犯他人知识产权或其他合法权益的内容(如,字体、图片、文章内容等),经相关版权方、权利方等提供初步证据,融合网有权先行予以删除,并保留移交司法机关查处的权利。参照相应司法机关的查处结果,融合网对于第三方企业用户所发布内容的处置具有最终决定权。

个人或单位如认为第三方企业注册用户在融合网上发布的内容(如,字体、图片、文章内容等)存在侵犯自身合法权益的,应准备好具有法律效应的证明材料,及时与融合网取得联系,以便融合网及时协调第三方企业注册用户并迅速做出相应处理工作。

融合网联系方式:(一)、电话:(010)57722280;(二)、电子邮箱:2029555353@qq.com dwrh@dwrh.net

对免责声明的解释、修改及更新权均属于融合网所有。

新闻关注排行榜

热门推荐 最新推荐

热门关键字

关于我们 - 融合文化 - 媒体报道 - 在线咨询 - 网站地图 - TAG标签 - 联系我们
Copyright © 2010-2020 融合网|DWRH.net 版权所有 联系邮箱:dwrh@dwrh.net 京公网安备 11011202002094号 京ICP备11014553号